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Abstract

Solar production risk assessment is traditionally based on hypothetical power generation calculated from Typical
Meteorological Years (TMYs) or historical weather data. These approaches ignore climate trends and extrapolate
from small datasets, leading to production estimates that are unreliable and drift from reality over time. Sunairio
addresses these shortcomings via a system of stochastic climate simulations to create arbitrary amounts of realistic
local-climate-adjusted weather data.

On 100 representative US solar sites, we first verified that the Sunairio simulation method generated realistic
weather. We then found TMYs to be unrepresentative and to overpredict power generation at 85% of the sites.
We found site-dependent local-climate-trend production adjustments to range from -6.16% to 2.77% of predicted
production in 2022 — adjustments that grew in magnitude to -13.48% to 4.63% when extrapolated out to 2034.
An overall negative GHI trend of −0.225 W/m2 per year (83% of the sites had negative GHI trends) caused overall
production losses of 2.43% in 2022 and 4.98% in 2034 with respect to TMY estimates. Finally, the degree of
uncertainty in production estimates was at least four times lower in the Sunairio simulation data compared to
production estimates using historical samples.

1 Introduction

1.1 Motivation

Solar production risk assessment is a difficult task for
solar project developers and investors, who need to un-
derstand the impact of production volatility on financial
risk metrics. To assess the financial and practical viabil-
ity of potential solar sites, analysts typically rely on hy-
pothetical power production predictions which are based
on historical weather data. However, such projections
are unreliable, as there is insufficient data to smooth out
year-to-year variance — and no single year can be taken
as representative.
In this introductory section, we

▶ Introduce the current approaches to solar produc-
tion risk assessment (Section 1.2).

▶ Document their manifest limitations (Section 1.3).

▶ Present a new alternative solar production estima-
tion method (Section 1.4).

▶ Outline a study that compares the relative fidelity
and accuracy of all three approaches (Section 1.5).

1.2 Current approaches

1.2.1 Typical Meteorological Years

The first (and still most common) tool for solar produc-
tion risk assessment is the hypothetical “Typical Mete-

orological Year” (TMY), introduced by the Sandia Na-
tional Laboratories in 1978 [1]. Under this selection and
concatenation paradigm, twelve “representative” months
of weather (one for each calendar month) are selected
from a location’s historical data. The twelve months,
which typically come from different calendar years, are
then simply concatenated together to create a TMY.

This paradigm, which was dependent on heuristics and
for which “[n]o extensive validation has been performed
to assess the typicality of the years generated” [1], has
since become widespread in the solar industry. TMYs
created with a variety of slightly different selection algo-
rithms1 are now available for locations across the United
States.

1.2.2 Historical time series

Another method of solar production risk assessment is
to simply evaluate power production numbers using his-
torical data. Although not often explicitly stated, this
approach considers historical weather as samples of the
“true” weather distribution — and takes sample statis-
tics (means, medians, exceedance values, etc.) as empir-
ical estimates of true values.

1Most notably SolarGIS [2] and TMY3 [3].
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1.3 Limitation of current approaches

To properly evaluate a potential solar site, one first needs
robust estimates of expected future power generation.
Given weather variability and the resulting variability in
power generation, one also needs to account for the shape
and spread of the future power generation distribution.

As we shall see, TMYs are not typical years of me-
teorological data. More impactfully for solar power risk
assessment, they also consistently overpredict irra-
diance and power generation. And as TMYs are
point estimates of annual irradiance and generation dis-
tributions they provide no measure of variability — and
are thus of limited use in determining risk.

Power estimates derived from yearly historical means,
on the other hand, can provide some measurement of
variability. Given n years of historical weather data, one
has created n years of hypothetical generation data. Ide-
ally, the distribution and mean of these points would be
precise and unbiased representations of the true power
distribution.

Unfortunately, this is not the case. Historical esti-
mates have low precision due to a paucity of data. While
temperature data are available for many decades2, lo-
cal irradiance data are a relatively recent phenomenon,
with the widely used National Solar Radiation Database
(NSRDB) [5], for example, only providing data since
1998. Point estimates from these empirical distribu-
tions (which therefore contain at most 25 annual points)
are at best noisy approximations of their true counter-
parts. In fact, we will find a 0.93% uncertainty in annual
mean generation predictions due to the large variance
and small historical sample size.

More damaging to solar power predictions than the
issue of preciseness, however, is the question of bias —
particularly with respect to local climate trends in tem-
perature and irradiance. TMY algorithms and histori-
cal time series analysis are idealized as representative or
unbiased estimates of a stationary weather distribution
(one that does not change over time) — which is demon-
strably false. As a result, predictions of the present are
biased because they do not account for the trend, and
these biases only increase in magnitude as one predicts
dates further into the future. We will find local climate
trends to have a profound influence on solar site poten-
tial.

As an example, Figure 1 depicts annual temperature
averages and a fitted linear trend on a selected solar
site. The average temperature from TMY and Histor-
ical weather data (which underpredict with respect to
current and future years) are shown as horizontal lines.

2In the case of the Central England Temperature dataset[4], several
centuries

Figure 1: Annual temperatures at the Miami-Dade
Solar Energy Center displaying significant year-to-year
variance, a positive trend, and TMY (historical) esti-
mates that ignore the trend and approximate the median
(mean) of the distribution.

1.4 Stochastic climate simulation for so-
lar production risk assessment

The Sunairio method attempts to account for the afore-
mentioned issues of bias and precision via a system of
stochastic simulation.

In the Sunairio system, historical data are seen as
trended samples from an underlying site-specific weather
distribution. Climate trends in temperature and Global
Horizontal Irradiance (GHI) are calculated and used to
detrend historical data. The resulting data are then used
to create weather distributions for all hours of a calendar
year, which are sampled (with adjustments to maintain
site-to-site correlations and autocorrelation structure) to
create weather simulations which can be extended arbi-
trarily into the future. Solar generation is modeled on
the simulation weather and analyzed.

Through this system, one can create a large amount3

of simulation data at hourly temporal resolution.4 By
design, each simulation path is independent of all other
paths and all paths are explicitly adjusted for local trends
in weather. Large amounts of data decreases noise in
power generation estimates; grounding simulations in de-
trended historical data reduces bias and susceptibility to
climate trends.

3We typically create 1000 simulation paths.
4It is important to model weather at high temporal resolution (as
opposed to annually) due to seasonal, intraday, and inverter ef-
fects on solar power generation. In fact, resolution higher than
hourly could even lead to better results [6].
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1.5 The study

In this study, we analyzed the effect of analysis method
(TMY, historical time series, or stochastic climate simu-
lation) on weather and predicted solar production.
We first selected 100 solar sites across the continen-

tal US. Using 25 years of detrended historical weather
data, we then created 1000 simulation paths for each site
and compared GHI and modeled generation numbers for
weather based on TMYs, historical data, and simulations
(sim-2022).
As the value of the simulation data is largely depen-

dent on the ability of the stochastic simulations to re-
produce and extend patterns and trends from histori-
cal weather data, we also created simulations (sim-raw)
based on raw historical (as opposed to detrended histor-
ical) weather data. We confirmed, via analysis of GHI
and power predictions, that these simulations did not
deviate from historical data.
To demonstrate the ramifications of the method’s abil-

ity to extend weather predictions far into the future, we
also created and analyzed stochastic simulations with cli-
mate trends extended to 2034 (sim-2034).5

In all, there were 5 weather datasets that we considered
for each solar site:

1. tmy: 1 “year” of TMY data

2. hist: 25 years of historical data

3. sim-raw: 1000 simulation runs from raw historical
data

4. sim-2022: 1000 simulation runs from detrended his-
torical data

5. sim-2034: 1000 simulation runs from detrended his-
torical data, extended to 2034

2 Methods

In the sections below we discuss the following:

1. Solar site selection (Section 2.1).

2. Weather data sources (Section 2.2).

3. The TMY algorithm (Section 2.3).

4. Climate trends (Section 2.4).

5. Stochastic climate simulation (Section 2.5).

6. Solar power modeling (Section 2.6).

2.1 Solar site selection

We wanted to select a representative sample of US utility-
scale projects. To this end, we selected 100 solar sites
from the US Energy Information Administration’s (EIA)
Form 860 database of electric generators [7]. 50 sites had

5As we focused on the effect of different weather sources on pre-
dictions, we did not explicitly model solar cell degradation over
time, although correcting for this would not affect our results sig-
nificantly.

Figure 2: Selected solar sites, chosen to cover a
range of geographies and technical configurations.

nameplate capacities between 5MW and 20MW, while
the remaining 50 sites had nameplate capacities above
50MW.

We selected sites that were well distributed in latitude,
longitude, and DC/AC ratios6. The selected generators
covered a large range of technical configurations, DC/AC
ratios between 1.00 and 1.88, installation years between
2010 and 2021, and nameplate capacities between 5MW
and 240MW. The geographic distribution of the selected
generators is shown in Figure 2.

2.2 Weather data sources

Data for this study were provided by a combination
of sources. Temperature readings came from ERA5
and were downscaled using elevation data from the
Global Land One-kilometer Base Elevation (GLOBE)
dataset. Irradiance data came from a dataset made
using a combination of the National Solar Radiation
Database (NSRDB), Geostationary Operational Envi-
ronment Satellite (GOES) data, and the High Resolu-
tion Rapid Refresh model (HRRR) — all bias-corrected
against the Baseline Solar Radiation Network (BSRN).

All weather data inputs were downscaled and inter-
polated to the centroids of the analyzed sites, giving
us 25 years of complete hyper-local weather data (1998-
2022).7

2.3 TMY generation

As the latest TMYs provided by NREL/Sandia [8] are
only available at 4km resolution and only considered
weather data from 1998-2017, we re-implemented the
most recent TMY algorithm (TMY3) to create TMYs
at each of our solar sites.

As with all TMY algorithms, the TMY3 algorithm
[3] selects 12 “representative” calendar months — one
representative January, one representative February, etc.
— and concatenates their respective weather together to

6We chose a spread of DC/AC ratios to control for inverter clipping
effects.

7Temperature data are available since 1950; irradiance data are
available since 1998.
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form a “typical” year. With 25 years of historical data,
candidate months from 25 different years can be selected
to represent each calendar month in the TMY.
Months are selected in a 3 step process (more details

can be found in Appendix A):

(i) Choose 5 candidates via weighted Finkelstein-
Schafer statistics.

(ii) Discard candidates due to persistence criteria.

(iii) Select the top candidate by proximity to long-term
means and medians.

The selected months are then combined to make the
TMY at that site.

2.4 Climate trends

Given the small number of historical years and consid-
erable noise in weather averages, we used linear regres-
sion models on yearly averages to calculate climate trends
for each weather variable at each location. The simula-
tion model framework, however, is also compatible with
physics-based climate models.8 Figure 3 depicts the sign
and magnitude of temperature and GHI trends for the
selected sites.9

Temperature trends were positive for all 100 sites with
a mean trend of 0.030 °C/yr — consistent with the 0.027
°C/yr rise in North America found in [11]. Detected
trends ranged between 0.021 °C/yr and 0.047 °C/yr.

More importantly for solar production assessment,
GHI trends were negative for 83 of the 100 sites,
with a mean trend of −0.225W/m2/yr. Detected trends
ranged between −0.640W/m2/yr and 0.314W/m2/yr
and varied regionally — with positive trends in the West-
ern US and negative trends elsewhere, particularly in the
Midwest.
Global Climate Models have difficulty resolving cloud

dynamics due to the localized nature of convective cells.
As such there is little consensus on the trend in GHI from
climate researchers. However, we feel that trends in pre-
cipitation may serve as a proxy for cloud cover and thus
have an inverse relationship with GHI. In fact, precipita-
tion trends show good agreement with our observations
of GHI. The Fourth National Climate Assessment [12] re-
ports a pronounced trend in annual precipitation in both
observations and climate models with positive trends in
the Eastern US and negative trends in the Western US.

2.5 Stochastic climate simulation

To create weather simulations, we first computed Cumu-
lative Distribution Functions (CDFs) for each weather

8Current climate models do not accurately predict clouds — and
hence GHI ([9], [10])

9While linear trends are appropriate for shorter time horizons (e.g.
in this study), trends over longer time horizons may stray from
linear patterns according to socio-economic pathways and govern-
ment actions.

Figure 3: Local climate trends calculated at the
selected solar sites. Color and icon direction indicate
trend direction; icon size indicates trend magnitude. We
note positive temperature trends and regional but broadly
negative GHI trends.

variable and each hour of the year.
For sim-raw, CDFs were computed on unadjusted his-

torical data; for sim-2022 and sim-2034, CDFs were
computed on historical data detrended to year y.

For example, if we detected a positive temperature
trend at a location and were detrending to the year
2022 (sim-2022), we adjusted hourly weather readings
upward (Figure 4 shows the magnitude of detrending ad-
justments per year). Hourly adjustments were refined to
satisfy various physical requirements.10

These distributions were then used to sample, with
adjustments to maintain historical correlation and auto-
correlation structure across time, solar sites, and weather
variables. Maintenance of these correlation structures
ensures realistic regional weather predictions and effec-
tively increases site training data size.

For each simulation setup (sim-raw, sim-2022, and
sim-2034), we created 1000 hourly year-long paths for
all solar locations and variables.

2.6 Solar power model

While some PV solar production models, such as NREL’s
physics-based PVWatts [13], can model solar produc-
tion using a comparatively small set of inputs, these
models utilize empirically-derived algorithms — making

10No negative irradiance numbers, irradiance adjustments only
during daylight hours, etc.
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Figure 4: Adjustments to detrend tempera-
ture at the Miami-Dade Solar Energy Center into 2022-
equivalent temperatures. Adjustments decrease in mag-
nitude as the historical year approaches the target year
of 2022.

them slow to run on simulations of many sites over long
time horizons. The machine-learning-based Sunairio So-
lar Power Model, on the other hand, makes reliable pre-
dictions from a simple set of inputs — with a runtime
low enough to enable large-scale applications.

The Sunairio Solar Power Model was constructed using
Artificial Neural Nets (ANNs) on twelve features. Four
of the features (solar zenith angle, solar azimuth angle,
GHI, and temperature) change hour-by-hour; eight fea-
tures describe the installed capacity and configuration of
the solar site (see Table 1). This set includes just two
weather variables as a deliberate design choice to limit
data overhead and model complexity.11

The non-linear nature of solar power makes ANNs
quite suitable for capturing the complex relationship be-
tween weather, orientation angles, and power output.

We trained our ANN on 717 hypothetical solar sites
(varying location, technical characteristics, and weather)
to replicate power production predictions generated from
pvlib-python’s implementation of PVWatts.[14]

Validation against physics models We validated
our solar power model on 16 solar sites by comparing
model ANN solar power predictions against production
estimates from physics-based industry-standard models.
The mean R2 was 0.98. Figure 5 shows physics-based

11For example, while other models relied on explicit decomposition
GHI into DNI and DHI components as data inputs, the Sunairio
model learned this decomposition implicitly.

Figure 5: Validation of solar model production
predictions by comparing model predictions (y-axis) to
NREL’s PVWatts predictions (x-axis) at noon hours on
16 solar sites (n=1,789,632).

models against model predictions at noon hours, where
R2 was 0.999.

We validated further by comparing ANN solar power
model predictions to PVWatts modeled power at all 48
state capitals in the contiguous United States. We evalu-
ated two technical configurations: A) 250 MW fixed-tilt
and B) 250 MW single-axis tracking. The mean percent
differences across all sites were 0.309% and 0.296%, re-
spectively. Tables with all annual generation values for
both PVWatts and the ANN can be found in Appendix
B.

3 Stochastic climate simulation
validation

To verify that our simulation methods produce realistic
data, we first created 1000 simulation runs (each contain-
ing a year of data) for each of the 100 sites without any
climate trend corrections. The simulation results should
have similar weather and generation distributions as his-
torical data — but lots more data.12 (Section 3.1)

We then verified that our climate trend adjustments
worked as expected (Section 3.2).

121000 samples of simulated meteorological years as opposed to 25
years of historical data.
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Description

Site Coordinates Latitude and longitude of solar site
DC Capacity Installed DC panel capacity
Albedo Ground reflected fraction of incident sunlight
GCR Ratio of solar array area to total ground area
Bifacial Gain Generation gained due to bifaciality
Tilt Angle Angle of panels from the horizontal
Tracking Type Tracking strategy: fixed or single-axis
Backtracking Adjustment for shade-accounting-tracking systems
Angle Range Range of single-axis rotation along horizontal axis

Table 1: Inputs to the solar power ANN reflecting solar site characteristics. Used in conjunction with time-
dependent zenith, azimuth, GHI, and temperature features.

Figure 6: Histograms comparing historical and
generated simulation hourly GHI across all sites.
Bins are 40W/m2 wide; p is the proportion of data in
each bin. As half of the GHI values were 0 (i.e. night-
time), the shaded difference in p for the [0, 40) bin is
given in a column to the left. Historical and Simulation
distributions are very similar.

3.1 Simulation validation

3.1.1 Hourly GHI distributions

Histogram: Figure 6 shows a histogram of hourly
GHI readings across all sites in the hist and sim-raw
datasets. The distributions are visually quite close with
a slight deviation in sim-raw values towards the center
of the distribution. A histogram of hourly GHI readings
for a sample site can be found in Appendix C.

QQ plot: Figure 7 shows a QQ plot of the hist and
sim-raw hourly GHI readings across all sites with a ref-

Figure 7: QQ plot of historical and simulation
hourly GHI distributions on all sites. Points are
quite close to the line indicating distribution equality.

erence line at y = x plotted that corresponds to distri-
bution equality (i.e., the condition where the simulation
quantiles match the historical quantiles). The axes of
the QQ plot range from 0.5 to 1 as around half of the
predicted GHI values in both datasets were identically 0.
A QQ plot of hourly GHI readings for a sample site can
also be found in Appendix C.

3.1.2 Annual GHI distributions and generation

Mean and median GHI and production numbers across
all sites and meteorological years are shown in Table
2.13 While hist GHI and generation means were slightly
higher than their sim-raw counterparts, this pattern was
reversed when we consider medians.

13For median numbers, we take the median at each site and then
take the mean of the medians.
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GHI AC

hist 198.53 (198.62) 0.2844 (0.2845)
sim-raw 197.97 (198.63) 0.2838 (0.2847)

Table 2: GHI (W/m2) and production (AC capac-
ity factor) over all sites. Medians are in parentheses;
hist and sim-raw GHI and Production are close.

Figure 8: Annual production distributions at Two
Creek Solar (Wisconsin Public Service Corp.). sim-raw,
as it contains 40x more data, is smoother and more com-
plete than the noisy hist distribution. Note that due to
limited data, hist lacks samples of the extremes.

In terms of standard error (Appendix E), we found
sim-raw GHI means (medians) to be on average 0.69
(0.53) units of standard error from the hist estimates;
generation means (medians) were on average 0.53 (0.56)
apart. In other words, the differences between hist and
sim-raw were smaller in magnitude than error the in the
hist estimates themselves.

On a site-by-site basis, we also performed t-tests to
compare annual GHI and generation numbers between
the 25 historical years and 1000 simulation runs. We
did not find significant differences in annual GHI (AC
capacity factor ) means at 99 (100) of the 100 sites (p >
0.05).14

Figure 8 displays the distributions of one solar site’s
mean annual AC capacity factors.

14Even if the distributions were identical, we would expect 5 of
the 100 to have significant differences, so a small number of sites
with a significant difference is not surprising.

Figure 9: Climate trend adjustment validation
showing detected site GHI trend (x-axis) and differences
between mean trend adjusted simulation GHI and his-
torical GHI (y-axis). Local GHI trends are reflected in
simulation GHI as expected.

3.2 Trend extrapolation

Having verified that the stochastic simulations produced
realistic weather, we verified that our stochastic climate
simulations accounted for GHI trends as expected.

Given a site annual GHI trend of γ, we expected mean
sim-2022 GHI to be 12γ higher than mean hist GHI.15.
Figure 9, which plots each site’s detected GHI trend
against differences in mean GHI between sim-2022 and
hist shows this to be the case.

sim-2034 was also able to extend GHI trends as ex-
pected — Figure 10 plots detected GHI trends against
differences in mean GHI between sim-2034 and sim-
2022.

Figure 11 shows annual historical and simulated mean
GHI values for the Miami-Dade Solar Energy Center
(FPL) as well as the detected trend on historical values.
We note that sim-2022 is in line with this trend and that
the trend was successfully extended out to 2034.

4 Results

We first remark that as irradiance is much more impact-
ful than temperature for PV production at the scale of
the climate trends and differences that we see ([15], [16]),
we focus on GHI and generation statistics.

15Assuming linear trends, sim-2022 should be on average 12 years
of trend from the 1998-2022 historical means.
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Figure 10: Climate trend extrapolation valida-
tion showing detected site GHI trend (x-axis) against dif-
ferences in mean GHI between sim-2034 and sim-2022
simulations. Differences correctly reflect 12 years of ad-
ditional climate trends.

Figure 11: Annual GHI averages at the Miami-
Dade Solar Energy Center. Simulation GHI averages
for 2022 and 2034 are in line with the detected nega-
tive trend.

Generation statistics are reported via modeled AC ca-
pacity factor. When reporting exceedance values, we fol-
low the industry convention that a PY value is exceeded
Y% of the time.16

We note four major results:

▶ TMYs are not typical (Section 4.1).

▶ TMYs GHI & production are biased (Section 4.2).

▶ Climate change significantly affects solar production
(Section 4.3).

▶ Stochastic simulation reduces uncertainty in produc-
tion estimates (Section 4.4).

Summary Statistics comparing tmy, hist, and sim are
given in (Section 4.5).

4.1 TMYs are not typical

In our data, the TMY algorithm did not generate typi-
cal years. Rather, TMY years were idealized years with
lower variance than real life.

Given a solar site and a calendar month m, we calcu-
lated the mean GHI reading for each of the 25 examples
of m in the historical data17. We then converted these
into z-scores using the historical mean and standard de-
viation.18

If the process of selecting months for use in a TMY
preserved historical variance, the 1200 selected z-scores
across all TMY months (100 sites, 12 calendar years) and
sites should follow a similar distribution to the 30000 z-
scores across all historical months and sites. (100 sites, 12
calendar months, 25 years of data) As Figure 12 shows,
this is not the case.

The standard deviation of TMY-selected months
(0.43) is about half that of the historical distributions
(0.98) — reflecting the creation of years that feature
much less month-to-month variation than real life.

Additional evidence of the atypicality of TMYs via
mean monthly Finkelstein-Schafer statistics is given in
Appendix D.

4.2 TMY GHI & production are biased

Perhaps more importantly for solar production risk as-
sessment, the TMY algorithm produced meteorological
years that were biased towards sunny weather.

In particular, the TMY algorithm selects months from
a group of historical months via “typicality” definitions
based on rankings — not raw values — and therefore
selects months more similar to median months than to
mean months. As the monthly historical GHI z-scores
from the previous section are left-skewed (Figure 12)19,

16In other words, a P90 value is lower than a P50 value while a
P10 value is higher.

17One per historical year.
18Calculated on the aforementioned 25 historical samples.
19Fisher-Pearson coefficient of skewness of −0.37
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Figure 12: Distribution of monthly GHI z-scores
showing months selected in TMYs to create atypical years
with reduced month-to-month variance. Note the left-
skew of historical months, which causes the TMY (which
selects median-like months) to overpredict GHI.

GHI AC

tmy 200.29 0.2871
hist 198.53 0.2844

Table 3: Irradiance and production on TMY and
historical weather showing significantly higher (p <
0.001) differences. tmy overpredicts hist production by
0.95%.

this implies that the mean z-score for a TMY-selected
month was higher than historical averages — to be pre-
cise, 0.13 z-scores higher (a significant (p < 0.001) dif-
ference).
This positive bias in monthly GHI z-scores was re-

flected in the irradiance of months chosen by the TMY
algorithm — and the resulting power production. Table
3 gives the average GHI readings and AC capacity factors
for the two datasets. Paired t-tests of both GHI and gen-
eration find the differences to be significant (p < 0.001).
Figure 13 shows histograms of the percentage overpre-

diction of tmy vs hist in annual GHI and AC capacity
factor20. TMY means (medians) are higher than the his-
torical estimates at 85% (82%) of the solar sites. The
TMY generation estimates correspond to an average his-
torical percentile of 62%, i.e. a P38 exceedance value.
In other words, TMY months presented a significantly

sunnier view of history, corresponding to the P38 ex-
ceedance level.

20i.e. (tmy− hist)/hist ∗ 100.

Figure 13: Histograms of percentage differences
in GHI and production between TMY and his-
torical averages, showing tmy to overpredict both at
the vast majority of the sites.

4.3 Climate change significantly affects
solar production

GHI and power production have a non-linear relation-
ship21 at an instantaneous and hourly level — underscor-
ing the need for modeling solar production using hourly
weather predictions (instead of simple scaling of average
annual values). Unsurprisingly, GHI climate trends were
consistently reflected in power production predictions.

In addition to having a nonlinear effect on hourly
power production, GHI trend adjustments are not ap-
plied at night. A 1% change in mean annual GHI, for
example, corresponds to a larger change in daylight GHI
that is dependent on hour, season, and latitude.

As a result, we found differences in GHI due to cli-
mate trends to have an outsized effect on power produc-
tion predictions. Across all sites, changes in production
predictions between hist and sim-2022 were 50% larger
than changes in GHI predictions. In particular, the dif-
ference in power predictions for 2022 — which are due
solely to accounting for climate trends — ranged from
-6.16% to 2.77% of average AC capacity factor.

These differences only rise in magnitude when extend-
ing out to 2034, where we find climate-trend-adjusted
differences in power predictions for 2034 from histori-
cal averages to range from -13.48% to 4.63% of average
AC capacity factor. The large magnitude and variance
of these differences underscores the need to model local

21Necessitating models like ours described in Section 2.6.
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Figure 14: Annual generation at the Miami-Dade
Solar Energy Center. The negative trend in GHI (Figure
11) is accounted for in the sim-2022 simulations and ex-
trapolated to 2034 in the sim-2034 simulations, leading
to drops of 2.66% and 6.59% in production from histor-
ical means.

climate trends when modeling solar projects.
Figure 14 shows the power generation analog to Figure

11 at the Miami-Dade Solar Energy Center. We again
note that the sim-2022 data reflects the trend in gener-
ation and that this trend is continued in sim-2034.

4.4 Stochastic simulation reduces uncer-
tainty in production estimates

We explored the degree of uncertainty in each of our
datasets, focusing on the more economically pertinent
variable of power generation22.

4.4.1 P50 uncertainty

Table 4 gives the average adjusted standard error (see
Appendix E for details) of P50 site annual generation es-
timates as a percentage of generation predictions. We
note that TMYs do not give any estimate of uncer-
tainty, that uncertainty in power generation predictions
from historical data is four times higher than uncer-
tainty resulting from simulation, and that average ex-
pected uncertainty in P50 estimates from historical data
approaches one percent of generation predictions.

4.4.2 Exceedance values

Estimates of exceedance values are more susceptible than
mean and median estimates to uncertainty due to small

22GHI statistics show similar patterns.

Error

tmy -
hist 0.93%
sim-raw 0.19%
sim-2022 0.22%
sim-2034 0.23%

Table 4: Standard error of median estimates as a
percentage of generation, reflecting the noise inherent in
extrapolating from limited historical data and the 4x im-
proved accuracy of Sunairio estimates. Note the inability
of the single-year tmy to provide error estimates.

sample sizes — fewer samples lead to fewer rare events,
hampering attempts to estimate rare event statistics.

Calculating P90, P95, and P99 estimates on historical
data is prone to uncertainty. As an illustration, given 25
years of independent annual generation data, there is an
approximately 7.2% chance that none of the encountered
years is among the true bottom 10% of generation.23, a
27.7% chance that none is among the true bottom 5%,
and a 77.8% chance that none is among the bottom 1%.24

We sampled sim-raw annual generation data to ex-
plore the uncertainty in exceedance values PY as a func-
tion of Y and sample size n. From each site’s 1000 annual
generation numbers, we created 100 samples of n annual
generation results with replacement. We then calculated
exceedance values on these samples and looked at the
standard deviation in the estimates.

Figure 15 shows the results of our bootstrapping tests.
As expected, uncertainty in PY increased as we move
from the median. All uncertainty was greatly reduced
when n increases. In particular, PY uncertainty esti-
mates with n = 25 were halved with a larger sample
size of n = 100. The Sunairio method, simulating 1000
outcomes, would have even lower uncertainty.

4.5 Summary statistics

4.5.1 All sites

Table 5 gives the mean, P50, P90, and P99 values for
GHI on each dataset, averaged over all sites.

Empirical hist estimates are about 1% less than the
unreasonably sunny TMYs, sim-raw and hist are quite
close, and sim-2022 and sim-2034 account for the overall
negative trend in GHI as expected.

Paired t-tests of P50 estimates between datasets find
significant differences (p < 0.001) between tmy and
hist, sim-raw and sim-2022, and sim-2022 and sim-
2034. Notably, the paired t-tests do not find a significant
difference between hist and sim-raw, further validating

230.925 ≈ 0.0719
24These estimates become even higher when we account for the
fact that historical samples are autocorrelated.
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Figure 15: Uncertainty in exceedance values PY
as a function of Y . Uncertainty increases when attempt-
ing to account for extreme events and is universally de-
creased with an increased sample size — highlighting the
benefits of simulation over historical estimates.

that the Sunairio method faithfully reproduces realistic
weather.

Turning to generation, Table 6 gives the mean, P50,
P90, and P99 values for production on each dataset, av-
eraged over all sites.

We note a 1% drop in AC capacity factor when com-
paring hist to tmy, very similar production numbers
between hist and sim-raw, and decreasing production
when the overall negative trend in GHI is accounted for
and extended.

We also see the outsized effect of GHI on production
— in particular, the average -3.13% drop in annual site
GHI between hist and sim-2034 becomes a -4.36% drop
in annual site AC capacity factor.

mean P50 P90 P99

tmy 200.29 200.29 - -
hist 198.53 198.62 191.01 187.61
sim-raw 197.97 198.63 186.02 173.99
sim-2022 195.94 196.59 183.03 169.77
sim-2034 192.54 193.24 179.53 166.35

Table 5: GHI mean and exceedance values in
W/m2 over all sites. We see tmy overprediction, simi-
larity of sim-raw and hist, and a overall negative trend
in GHI that is accounted for and extended to 2034. Note
that the historical P90 and P99 estimates on 25 data
points are unreliable.

mean P50 P90 P99

tmy 0.2871 0.2871 - -
hist 0.2844 0.2845 0.2728 0.2675
sim-raw 0.2838 0.2847 0.2651 0.2470
sim-2022 0.2795 0.2804 0.2592 0.2392
sim-2034 0.2724 0.2733 0.2521 0.2327

Table 6: Production mean and exceedance val-
ues in AC capacity factor over all sites. Like in Ta-
ble 5, we find overprediction by tmy, similarity between
hist and sim-raw, and an overall negative trend that
is accounted for in sim-2022 and extended in sim-2034.
Average percentage loss per site between tmy and sim-
2034 is 4.98%. Note again that P90 and P99 estimates
on hist are unreliable.

(+) (-)

tmy 0.73% 0.97%
hist - -
sim-raw -0.04% 0.07%
sim-2022 1.65% -2.19%
sim-2034 2.35% -5.43%

Table 7: Average percentage change in P50 pro-
duction estimate by GHI trend direction with re-
spect to historical averages, showing continued tmy over-
prediction and similarity between hist and sim-raw on
all sites. Climate trended simulations production esti-
mates on negatively trending GHI sites for the year 2034,
for example, are 5.43% less than historical averages.

4.5.2 Site trends

While 83 of our 100 solar sites had negative GHI trends,
the remaining 17 sites became sunnier over the course of
the historical data. Table 7 gives the average percent-
age differences in P50 power generation from historical
estimates of each of these sets of solar sites.

Again, tmy overpredicts generation and hist is quite
close to sim-raw. Accounting for climate trends results
are as expected, with positive trend sites producing more
power over time — and negative trend sites producing
less power over time. With the exception of hist and
sim-raw, paired t-tests find the differences to be signifi-
cant (p < 0.001)
Calculating local climate trends, in other words, can

be quite significant.

5 Conclusion

In the original TMY paper [1], the authors wrote the
following:

Weather data are actually a multivariate
stochastic process with complex interrelation-
ships among the variables. Fitting multivariate
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stochastic processes with mathematical models
is somewhat difficult. Also, even if such mod-
els could be derived and a computer simulation
performed to generate meteorological data, one
would still be faced with the problem of decid-
ing about the typicalness of a set of generated
data.

These problems plus time constraints (both
chronological and computational) suggested
that a more empirical approach for obtaining
TMYs might be better.

These words — written before the invention of Linux,
MS-DOS, or the Macintosh — reflected the computa-
tional and methodological limitations of 1978. Advances
in computational power as well as modern techniques for
maintaining inter-variable relationships have made com-
plex multivariate stochastic modeling possible.

Executing the TMY authors’ vision, the Sunairio
method models weather as a multivariate stochastic pro-
cess that respects a high-dimensional correlation struc-
ture. It derives models empirically (reflecting an ongoing
paucity in weather data) and can stochastically generate
an arbitrary amount of realistic weather data across a
fleet of solar sites.

5.1 Overview

In this study, we selected a representative sample of 100
solar sites in the continental US. We calculated climate
trends and TMYs for each site using 25 years of historical
data. We also created weather simulations designed to
reflect historical distributions (sim-raw) and account for
climate trends (sim-2022 and sim-2034).
We discovered a negative trend in GHI at 83 of our 100

sites with an overall negative trend of −0.225W/m2/yr.
We found that the TMY algorithm creates years that

are not typical and are biased towards higher irradiance.
TMY PV generation estimates were higher than histor-
ical averages at 85 of the 100 sites with an average of
0.95% production overprediction (Sections 4.1 and 4.2).

Further, we concluded that historical estimates are
also unreliable as they fail to account for climate trends
(Section 4.3) and are plagued by small sample sizes (Sec-
tion 4.4). The failure to adjust for climate trends leads
to mispredictions ranging from -6.16% to 2.77% of AC
capacity factor in current years; small sample sizes lead
to expected prediction error from true P50s of 0.93%.

The Sunairio Stochastic Climate Simulation method
on the other hand, is able to

▶ Create weather indistinguishable from historical dis-
tributions. (Section 3)

▶ Generate arbitrary amounts of realistic weather sim-
ulation data — thereby enabling analysis of extreme
weather events not observed in limited historical
data (Section 2.5).

Figure 16: Annual production averages in AC
capacity factor at the FPL Rodeo Solar Energy Center.
Note the overprediction of tmy with respect to hist and
the result of the negative GHI trend on trend-adjusted
production estimates for 2022 and 2034 — indicating
losses of -2.84% and -6.71% with respect to historical av-
erages respectively.

▶ Properly adjust for local climate trends and extrap-
olate trend effects into the future, with 2034 pro-
duction estimates differing from historical averages
by -13.48% to 4.63% of AC capacity factor. (Section
4.3).

▶ Reduce uncertainty in means, medians, and ex-
ceedance values estimates. Historical uncertainty in
means and medians, for example, was 4x higher than
simulation uncertainty (Section 4.4).

▶ Although general irradiance trends are negative,
these trends vary locally in both magnitude and sign
— and with magnified effects when considering mod-
eled power generation (Section 4.5).

5.2 Illustrative examples

5.2.1 Negative GHI trend

Consider the FPL Rodeo Solar Energy Center, a
74.5MW solar site in DeSoto county, Florida with a
−0.359W/m2/yr GHI trend.
Figure 16 shows modeled solar generation since 1998

as well as the mean climate-adjusted Sunairio generation
estimates for 2022 and 2034. Horizontal lines indicate
the historical mean generation and tmy estimate.

While the tmy estimate of 0.2613 overestimates the
historical mean of 0.2587, the sim-2022 estimate of
0.2514 and sim-2034 estimate 0.2414 capture and extend
the effects of the local climate trend — and produce gen-
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Figure 17: Annual production averages in AC ca-
pacity factor at the PG&E Gates Solar Center. Again,
note the overprediction of tmy with respect to hist and
the influence of the slightly positive GHI trend — leading
to modest 2022 and 2034 production gains of 0.76% and
1.10% with respect to historical averages respectively.

eration predictions that are 3.8% and 7.6% lower than
the TMY estimate respectively. Assuming an energy
price of $50 per MWh, these overestimations correspond
to annual revenue shortfalls of $323,000 and $650,000,
respectively.

5.2.2 Positive GHI trend

On a more optimistic note, we now consider the PG&E
Gates Solar Center, a 20MW solar site in Kings county,
California with a 0.129W/m2/yr GHI trend. (Figure 17)

Again, the tmy estimate of 0.3445 overestimates the
historical mean of 0.3389. The sim-2022 estimate of
0.3415 and sim-2034 estimate of 0.3427 reflect a the
slight upward trend in irradiation from historical aver-
ages — but do not exceed the sunny tmy estimate. An-
nual revenue shortfalls from TMY estimates are $26,500
and $16,000, respectively.

5.3 Discussion

Solar sites across the US are broadly underperfoming
with respect to P50 estimates [17]. While others have
investigated underperformance as a result of technical
and equipment failures [18], [19], we investigated and
discovered additional sources of underperformance due
to (i) TMY overprediction and (ii) failure to account for
negative trends in irradiance.
The Sunairio method accounts for these biases

via stochastic simulations of locally-climate-adjusted

weather, which result in demonstrably more accurate and
reliable estimates of potential power generation over a
long time frame. Combining simulated power predictions
with knowledge of regional climate patterns can lead to
more diversified solar portfolios and higher overall power
generation.
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Figure 18: Selected CDFs for January tempera-
tures at a sample site. 2006 has the largest FS statistic,
2019 has the smallest FS statistic, and 2008 was chosen
in the eventual TMY.

Appendix A TMY3 details

In the following discussion of our re-implementation
of TMY3 [3], m is a calendar month with dm days.
The TMY algorithm uses daily-averaged weather read-
ings; for each weather variable x and candidate calendar
month from year y we have dm readings. We define xi

y

as the reading of x on day i in year y

A.1 Finkelstein-Schafer statistics

Given a weather variable x, we defined F x
y as the Cu-

mulative Distribution Function (CDF) of the dm sample
readings from year y and F x as the CDF of all 25dm
samples from all years.

We defined the Finkelstein-Schafer statistic [20] as

FS(y : m,x) =
1

dm

dm∑
i=1

|F x(xi
y)− F x

y (x
i
y)|

which measures the average distance between the long-
term CDF and the CDF for a particular candidate
month. Figure 18 displays selected January temperature
CDFs for one of the sites.

Each of the 25 candidate months was assigned a score
with the weighted sum of these statistics across several
weather variables ∑

x∈X
wxFS(y : m,x)

Figure 19: Persistence cutoffs for a candidate
month with 4 streaks in the first tertile and 5 streaks in
the third tertile.

where x ranged across temperature, humidity, wind
speed, and irradiance with weights wx of 0.2, 0.2, 0.1,
and 0.5 respectively. Candidate months that were not
among the five highest-scoring months were discarded.

A.2 Persistence criteria

We calculated tertile boundary values for temperature
and irradiance over all 25dm readings. For the 5 remain-
ing candidate months, we then detected streaks of con-
secutive readings (Figure 19). We considered streaks in
the first or third temperature tertiles and streaks in the
first irradiance tertile.

We eliminated candidate months that had the most
streaks, had the longest streak, or had no streaks.

A.3 Means and medians

Finally, we ranked the remaining candidates by their
closeness to the long-term means and medians.

Following [21] with some minor modifications, we cal-
culated the long-term mean µx, median x̄, and standard
deviation σx on all 25dm daily readings. Then for a can-
didate month from year y, we calculated the scaled dif-
ferences between that month’s mean µy

x and median x̄y

from the long term values:

1

σx
|µx − µy

x|
1

σx
|x̄− x̄y|

The candidate month from year y is then assigned a score
equal to the maximum of resulting 4 scaled differences.
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Figure 20: Hourly GHI histogram at a sample site.
Bins are 40W/m2 wide; p is the proportion of data in
each bin. As half of the GHI values were 0 (i.e. night-
time), the shaded difference in p for the [0, 40) bin is
given in a column to the left. Historical and Simulation
distributions are very similar.

We selected the candidate month with the smallest score
to represent m in the TMY.

Appendix B ANN validation

Tables 8 and 9 give state capital validation numbers for
the solar model using single-axis and fixed-tilt tracking
configurations respectively.

Appendix C Site distributions

For a sample solar site, Figure 20 and Figure 21 show
a histogram and a QQ plot of hourly GHI for hist and
sim-raw data. We see similar patterns to Figure 6 and
Figure 7 — except with less data and thus more noise.

Appendix D Mean FS statistics

As discussed in Section A.1, Finkelstein-Schafer statistics
FS(y : m,x) measure how “typical” a particular month
is when compared to the long-term average for that cal-
endar month.

For a given weather variable x and a meteorological
year y, we calculated the mean Finkelstein-Schafer statis-
tic of the constituent months — in other words, the av-
erage “typicality” of the months.

PVWatts ANN % Difference

Alabama 474,183 472,803 0.291
Arizona 587,821 586,843 0.166
Arkansas 456,425 455,910 0.113
California 532,209 528,125 0.767
Colorado 497,571 494,314 0.655
Connecticut 401,063 399,521 0.384
Delaware 421,281 422,446 0.277
Florida 475,489 474,613 0.184
Georgia 459,767 458,818 0.206
Idaho 467,087 464,127 0.634
Illinois 422,488 421,267 0.289
Indiana 408,610 408,898 0.070
Iowa 416,416 415,665 0.180
Kansas 442,309 441,516 0.179
Kentucky 416,722 416,859 0.033
Louisiana 472,773 473,348 0.122
Maine 398,138 398,109 0.007
Maryland 424,475 424,930 0.107
Massachusetts 408,832 406,648 0.534
Michigan 389,726 389,655 0.018
Minnesota 400,448 399,999 0.112
Mississippi 465,113 463,899 0.261
Missouri 429,237 429,848 0.142
Montana 415,282 412,842 0.588
Nebraska 445,284 442,353 0.658
Nevada 551,993 547,236 0.862
New Hampshire 396,555 395,098 0.367
New Jersey 409,334 409,253 0.020
New Mexico 562,125 554,936 1.279
North Carolina 450,837 450,446 0.087
North Dakota 418,739 417,789 0.227
New York 390,804 390,358 0.114
Ohio 396,075 395,658 0.105
Oklahoma 486,551 483,433 0.641
Oregon 387,978 386,152 0.471
Pennsylvania 407,019 406,130 0.218
Rhode Island 410,230 408,576 0.403
South Carolina 464,989 465,128 0.030
South Dakota 431,978 432,800 0.190
Tennessee 424,522 423,895 0.148
Texas 480,074 480,521 0.093
Utah 479,750 477,043 0.564
Vermont 372,626 372,554 0.019
Virginia 430,515 431,760 0.289
Washington 342,529 342,465 0.019
West Virginia 400,870 400,640 0.057
Wisconsin 398,653 396,899 0.440
Wyoming 470,745 467,879 0.609

Table 8: Annual DC MWh on single-axis tracking
solar sites at 48 state capitals — for solar model valida-
tion
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PVWatts ANN % Difference

Alabama 403,057 400,983 0.515
Arizona 487,189 485,426 0.362
Arkansas 388,616 387,379 0.318
California 438,919 437,483 0.327
Colorado 422,382 420,605 0.421
Connecticut 347,174 346,023 0.332
Delaware 367,377 365,983 0.379
Florida 400,587 398,536 0.512
Georgia 388,328 386,279 0.528
Idaho 387,670 386,291 0.356
Illinois 361,119 359,489 0.451
Indiana 350,868 350,257 0.174
Iowa 359,205 358,505 0.195
Kansas 383,936 382,500 0.374
Kentucky 355,811 354,731 0.304
Louisiana 398,340 397,407 0.234
Maine 345,022 345,058 0.010
Maryland 368,214 367,360 0.232
Massachusetts 353,494 352,189 0.369
Michigan 333,242 332,883 0.108
Minnesota 346,474 346,036 0.126
Mississippi 393,701 392,179 0.387
Missouri 371,620 371,005 0.165
Montana 352,526 352,484 0.012
Nebraska 383,731 381,954 0.463
Nevada 454,843 452,627 0.487
New Hampshire 343,048 342,204 0.246
New Jersey 356,626 355,686 0.264
New Mexico 463,195 459,207 0.861
North Carolina 387,535 386,341 0.308
North Dakota 358,752 358,551 0.056
New York 337,406 336,855 0.163
Ohio 340,207 339,395 0.239
Oklahoma 410,222 407,891 0.568
Oregon 325,906 325,737 0.052
Pennsylvania 351,286 350,287 0.284
Rhode Island 355,134 353,540 0.449
South Carolina 395,800 394,454 0.340
South Dakota 373,831 374,238 0.109
Tennessee 362,090 360,819 0.351
Texas 406,283 404,528 0.432
Utah 401,929 400,613 0.327
Vermont 323,764 323,289 0.147
Virginia 371,423 370,665 0.204
Washington 292,743 293,167 0.145
West Virginia 344,023 343,076 0.275
Wisconsin 343,948 342,609 0.389
Wyoming 400,842 398,908 0.482

Table 9: Annual DC MWh on fixed-tilt solar sites at
48 state capitals — for solar model validation

Figure 21: QQ plot of historical and simulation
hourly GHI distributions at a sample site. Points are
quite close to the line indicating distribution equality.

mean std

tmy 0.046 0.005
hist 0.076 0.016

Table 10: Distribution statistics of yearly aver-
ages of monthly Finkelstein-Schafer statistics in-
dicating a reduced mean and standard deviation of tmy
scores. tmy years, in other words, are atypical — in that
their constituent months are too typical.

FS(y : x) =
1

12

∑
m

FS(y : m,x)

We compared the distributions of FS(y : GHI) between
the TMYs and the historical calendar years over all sites.
Figure 22 displays distribution box plots; Table 10 gives
the means and standard deviations of the distributions.

A simple t-test showed the markedly lower average
Finkelstein-Schafer statistics in TMYs to be significantly
different than raw historical years (p < 0.001). The
months in the TMYs, in other words, were not typical.

Appendix E Distribution
estimates

E.1 Exceedance values

In addition to considering means and medians, it is com-
mon in the solar industry to consider “exceedance” val-
ues and probabilities. Given a random variable X and
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Figure 22: Boxplots of yearly averages of
monthly Finkelstein-Schafer statistics showing
tmy years to contain months that have lower FS-
statistics on average than historical years

a probability threshold Y ∈ [0, 100], a PY exceedance
value of X is loosely defined as a value x which is ex-
ceeded Y percent of the time. A “P90” value, for exam-
ple, is expected to be exceeded 90% of the time.

P(X ≥ x) = Y/100

As the true distribution of X is generally not known, one
resorts to estimation methods to calculate exceedance
values in practice — e.g. via fitting normal distributions
or interpolating empirical CDFs. [22]

We found both of these methods to give similar re-
sults. Given the skewness and non-normality of the dis-
tributions encountered, we report exceedance values via
empirical CDF interpolation.25

We note that the P50 value of a set of values corre-
sponds to its median.

E.2 Uncertainty

Given a sample of n Independent and Identically Dis-
tributed (IID) values from a random variable X, one
can estimate the true mean via the sample mean. Given
many samples, one can calculate many estimates of the
true mean — the standard deviation of these estimates
is the “standard error of the mean” and is given by

25Following [23], we estimated empirical CDFs as in expectation,
where the k-th ranked value among n values is the expected k

n+1
percentile.

σ√
n

where σ is the standard deviation of X. As σ is not
known in practice, it is often estimated with the sample
standard deviation.

The “standard error of the median” is a bit larger.
Assuming normality, it is given by√

π

2
· σ√

n

Uncertainty in quantile estimates (and thus exceedance
values) is dependent on the estimation method used.

In our study, simulations runs were by design indepen-
dent of each other. Annual historical values, however,
are correlated year-to-year — and thus not IID. Thus,
we further adjusted our historical uncertainty estimates
by a correction factor of√

1 + ρ

1− ρ

where ρ is the Prais-Winsten autocorrelation coefficient
[24].

Analytic derivation of the standard error of exceedance
values is more computationally demanding, depends on
the quantile estimation method used, and is dependent
on assumptions on the underlying distribution. As a re-
sult, we also estimated uncertainty in exceedance values
empirically via bootstrapping from simulation results.
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Appendix F All solar sites

Table 11: Selected solar sites for the study with tmy and hist production as well as sim-yyyy production percentage differences from hist

hist sim-2022 sim-2034
Solar Site State DC/AC MW TMY P10 P50 P90 P10 P50 P90 P10 P50 P90
Agua Caliente Solar Project AZ 1.28 91 0.3480 0.3533 0.3454 0.3390 0.8% -0.9% -5.2% -1.1% -3.3% -7.4%
Albemarle Beach Solar NC 1.88 80 0.3382 0.3441 0.3317 0.3191 1.8% 0.7% -1.8% 0.7% -0.6% -2.9%
Alpine Solar CA 1.31 66 0.3502 0.3552 0.3501 0.3405 1.8% -0.6% -3.0% 1.1% -1.2% -4.0%
American Falls Solar ID 1.30 20 0.2727 0.2832 0.2736 0.2620 3.3% 1.4% -0.3% 3.9% 2.2% 0.2%
Apple Campus 2 PV CA 1.10 14 0.2694 0.2750 0.2678 0.2563 6.5% 2.6% -2.7% 8.2% 4.2% -1.1%
Assembly Solar II LLC MI 1.47 110 0.2603 0.2722 0.2557 0.2472 -3.2% -4.0% -8.9% -9.4% -10.6% -15.3%
Augusta PV - BD Solar Augusta LLC ME 1.21 7 0.2161 0.2284 0.2188 0.2099 0.9% 0.2% -1.6% 0.4% -0.4% -2.1%
Aulander Holloman Solar, LLC NC 1.56 80 0.3003 0.3151 0.3023 0.2911 1.3% -0.1% -2.9% 0.0% -1.6% -4.7%
Avalon Solar II AZ 1.34 16 0.3517 0.3547 0.3480 0.3410 2.7% -0.5% -5.7% 1.5% -2.4% -7.3%
BC Solar OR 1.31 8 0.2861 0.2983 0.2847 0.2700 5.1% 3.0% -0.7% 6.7% 4.6% 1.5%
Battle Mountain Solar Project NV 1.22 101 0.2808 0.2925 0.2788 0.2700 2.8% 1.9% -2.4% 3.4% 2.3% -1.6%
Beaver Run NJ 1.35 7 0.2516 0.2601 0.2492 0.2313 -0.6% -2.9% -3.5% -3.3% -6.4% -7.8%
Bluebell Solar II TX 1.30 115 0.3206 0.3344 0.3223 0.3076 1.5% -1.9% -6.1% -0.9% -4.2% -8.4%
Blythe Solar IV, LLC CA 1.12 69 0.3144 0.3157 0.3092 0.3035 1.6% -0.7% -4.9% 0.1% -2.5% -6.7%
Buckleberry Solar NC 1.44 52 0.2932 0.3050 0.2925 0.2790 0.9% -1.0% -3.7% -1.1% -2.8% -5.6%
Clark Road Solar 1, LLC MA 1.42 5 0.2621 0.2709 0.2570 0.2458 -0.2% -1.3% -3.7% -2.1% -3.4% -6.2%
Clifton Park Solar 1, LLC NY 1.50 5 0.2653 0.2763 0.2640 0.2486 -0.1% -2.4% -3.7% -2.3% -4.5% -6.6%
Comanche Solar CO 1.25 120 0.2984 0.3106 0.2987 0.2910 0.6% -1.9% -6.3% -2.4% -4.8% -9.8%
Coniglio Solar TX 1.36 124 0.3042 0.3110 0.2957 0.2799 0.2% -3.9% -9.1% -4.8% -9.0% -14.5%
Cotton Creek Solar Energy Center FL 1.41 74 0.3031 0.3150 0.3014 0.2862 -0.3% -3.7% -7.8% -4.4% -7.8% -12.7%
Dane County Airport Solar WI 1.06 11 0.2028 0.2128 0.1995 0.1889 -3.2% -4.9% -9.0% -9.3% -11.5% -15.3%
Decatur Parkway Solar Project, LLC GA 1.38 80 0.3020 0.3187 0.3015 0.2882 0.3% -2.3% -7.2% -3.6% -5.8% -11.0%
Deming Solar Energy Center NM 1.24 5 0.3342 0.3409 0.3320 0.3216 1.8% -0.9% -5.3% -0.1% -3.4% -7.7%
Erwin Farm NC 1.02 5 0.2166 0.2253 0.2132 0.2058 0.3% -0.4% -4.2% -1.4% -2.1% -6.0%
Escalante Solar III, LLC UT 1.32 80 0.3128 0.3201 0.3093 0.3014 3.5% 1.5% -2.8% 3.9% 1.6% -2.6%
Flatwood Farm NC 1.30 5 0.2716 0.2835 0.2697 0.2572 0.7% -0.6% -3.0% -1.0% -2.1% -5.2%
Fort Detrick Solar PV MD 1.18 16 0.2283 0.2405 0.2315 0.2165 -0.9% -4.9% -6.5% -5.3% -9.8% -12.3%
GMP Solar/Storage-Milton Hybrid VT 1.40 5 0.2412 0.2512 0.2373 0.2265 -0.2% -0.7% -3.4% -1.7% -2.4% -4.9%
Gates Solar Station CA 1.39 20 0.3445 0.3469 0.3408 0.3285 3.8% 0.7% -2.6% 4.2% 1.0% -1.9%
Grand View Solar Two ID 1.35 60 0.2889 0.2954 0.2848 0.2720 3.8% 1.6% -1.6% 4.8% 2.2% -0.8%
Great Valley Solar Portfolio Holdings, LLC CA 1.41 60 0.3402 0.3487 0.3393 0.3268 2.8% 1.1% -1.8% 3.4% 1.6% -0.9%
HL Solar CA 1.22 8 0.2906 0.2981 0.2873 0.2739 4.6% 3.0% -0.1% 6.2% 4.2% 1.9%
Harmony Solar FL 1.55 74 0.3344 0.3441 0.3336 0.3232 1.3% -2.7% -7.5% -2.6% -6.5% -11.3%
Harry Allen Solar Energy LLC NV 1.24 100 0.3239 0.3325 0.3239 0.3165 2.6% 0.7% -3.6% 2.3% -0.0% -4.4%
Held Solar Project MN 1.50 5 0.2745 0.2786 0.2706 0.2584 0.1% -2.6% -4.6% -3.2% -6.1% -7.9%
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Table 11: Selected solar sites for the study with tmy and hist production as well as sim-yyyy production percentage differences from hist

hist sim-2022 sim-2034
Solar Site State DC/AC MW TMY P10 P50 P90 P10 P50 P90 P10 P50 P90
Hillcrest Solar OH 1.32 200 0.2569 0.2627 0.2511 0.2379 -2.1% -5.3% -8.4% -7.7% -11.3% -14.8%
Hooper Solar CO 1.12 52 0.2805 0.2861 0.2758 0.2667 0.8% -0.2% -2.4% 0.7% -0.5% -3.1%
Imeson Solar FL 1.80 5 0.3431 0.3611 0.3438 0.3333 1.1% -1.1% -6.8% -2.4% -4.7% -10.3%
Innovative Solar 37 LLC NC 1.10 100 0.2354 0.2449 0.2313 0.2219 -0.4% -1.4% -4.9% -3.4% -4.2% -8.0%
Innovative Solar 43, LLC NC 1.00 51 0.2118 0.2195 0.2074 0.2010 0.2% -0.8% -5.2% -2.5% -3.4% -8.2%
Intel Folsom Phase 3 CA 1.25 5 0.3033 0.3070 0.2986 0.2861 5.0% 2.1% -2.0% 6.5% 3.2% -0.8%
Juno Solar Project TX 1.37 141 0.3390 0.3451 0.3343 0.3210 2.4% -1.1% -5.5% 0.7% -3.0% -7.7%
Lily Solar Hybrid TX 1.23 147 0.2846 0.2900 0.2752 0.2607 -0.5% -3.8% -8.4% -5.0% -8.2% -13.0%
Macho Springs NM 1.17 55 0.3205 0.3234 0.3165 0.3054 2.3% -1.8% -6.5% -0.3% -4.6% -9.6%
Marlin Solar TX 1.36 5 0.3035 0.3161 0.3027 0.2854 0.6% -3.3% -7.3% -3.5% -7.1% -11.4%
Marshall Solar Energy Project MN 1.50 62 0.2820 0.2846 0.2750 0.2616 0.2% -2.0% -3.9% -3.1% -5.7% -7.5%
Meadowbrook Solar Farm NC 1.36 5 0.2902 0.2958 0.2819 0.2691 0.2% -1.4% -5.1% -2.8% -4.6% -8.2%
Mesquite Solar 1 AZ 1.41 10 0.3680 0.3725 0.3669 0.3594 1.4% -1.0% -5.2% -0.3% -3.3% -7.3%
Miami Dade Solar Energy Center FL 1.52 74 0.3445 0.3452 0.3360 0.3295 2.1% -2.3% -8.1% -1.9% -6.4% -11.9%
Midway Solar - TX TX 1.30 182 0.3312 0.3414 0.3278 0.3154 0.8% -1.7% -6.7% -2.0% -4.7% -9.9%
Millican Solar Energy LLC OR 1.10 70 0.2293 0.2365 0.2282 0.2198 3.7% 1.4% -1.4% 5.0% 2.7% -0.5%
Millington Solar Farm TN 1.32 53 0.2752 0.2874 0.2744 0.2570 -2.3% -5.2% -8.1% -8.7% -11.8% -14.4%
Misae Solar TX 1.36 240 0.3312 0.3336 0.3220 0.3109 1.7% -1.4% -6.2% -0.6% -3.6% -8.3%
Moffett Solar Project SC 1.31 71 0.2826 0.2959 0.2806 0.2670 0.1% -2.5% -6.5% -3.3% -5.6% -10.3%
North Star Solar Project MN 1.38 100 0.2605 0.2632 0.2525 0.2437 -1.2% -3.3% -7.4% -6.2% -8.9% -12.7%
Nutmeg Solar CT 1.61 20 0.2808 0.2928 0.2800 0.2658 0.1% -1.6% -3.8% -2.3% -4.3% -6.9%
OCI Alamo 3 LLC TX 1.22 6 0.2794 0.2921 0.2807 0.2596 0.7% -3.8% -6.5% -3.5% -7.8% -11.2%
Old Wire Farm NC 1.42 5 0.2980 0.3085 0.2908 0.2813 0.4% 0.2% -3.8% -1.4% -1.9% -5.8%
Oxy Renewable Energy - Goldsmith TX 1.16 17 0.3041 0.3131 0.3037 0.2908 1.8% -2.1% -6.9% -0.8% -4.9% -9.7%
Payne Creek Solar FL 1.21 70 0.2777 0.2926 0.2813 0.2727 0.1% -3.4% -9.7% -3.9% -8.0% -14.4%
Pleinmont Solar 2 VA 1.23 240 0.2514 0.2533 0.2456 0.2308 0.2% -2.4% -2.7% -2.2% -4.8% -5.7%
Poseidon Solar, LLC AZ 1.19 20 0.3210 0.3264 0.3198 0.3103 1.6% -1.1% -4.9% -0.3% -3.3% -7.0%
RE Columbia Two, LLC CA 1.29 15 0.3484 0.3558 0.3501 0.3410 2.0% -0.5% -3.6% 1.0% -1.6% -5.0%
RP-Orlando, LLC FL 1.16 5 0.2578 0.2713 0.2586 0.2488 0.2% -2.9% -8.0% -3.9% -6.9% -12.0%
Red Horse 2 AZ 1.49 51 0.3681 0.3758 0.3673 0.3612 2.4% -0.9% -6.3% 0.4% -3.0% -8.3%
Ridgeland Solar Project SC 1.22 10 0.2662 0.2785 0.2638 0.2516 0.5% -2.5% -7.2% -3.4% -5.8% -11.1%
Rock Solid NJ 1.24 8 0.2425 0.2488 0.2382 0.2198 -1.1% -4.8% -5.6% -5.2% -9.3% -11.0%
Rodeo Solar Center FL 1.11 74 0.2613 0.2678 0.2592 0.2518 1.3% -2.6% -8.5% -2.4% -6.7% -12.7%
Rowe (CSG) NY 1.44 5 0.2443 0.2571 0.2456 0.2318 -0.4% -3.4% -5.7% -4.0% -7.0% -10.3%
SID Solar I, LLC NC 1.28 5 0.2740 0.2832 0.2724 0.2574 -0.0% -2.5% -4.3% -3.0% -5.2% -7.3%
SR Jenkins Ft Lupton CO 1.39 13 0.3095 0.3181 0.3078 0.2981 1.3% -2.3% -6.7% -1.7% -5.4% -10.4%
Sadiebrook NC Solar NC 1.34 5 0.2861 0.2932 0.2770 0.2680 0.5% -0.4% -4.8% -2.1% -2.7% -7.7%
Sadler Solar VA 1.28 100 0.2628 0.2715 0.2607 0.2487 0.1% -1.2% -3.0% -1.4% -3.0% -4.9%
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Table 11: Selected solar sites for the study with tmy and hist production as well as sim-yyyy production percentage differences from hist

hist sim-2022 sim-2034
Solar Site State DC/AC MW TMY P10 P50 P90 P10 P50 P90 P10 P50 P90
Sage Solar I-III UT 1.32 58 0.2840 0.3008 0.2801 0.2674 4.0% 3.9% -0.7% 5.6% 5.9% 0.9%
Scott Solar Farm VA 1.35 17 0.2793 0.2811 0.2738 0.2569 0.5% -2.0% -2.0% -1.2% -3.8% -4.0%
Scottsburg Solar Park IN 1.37 7 0.2637 0.2788 0.2615 0.2472 -3.6% -4.9% -7.8% -9.6% -11.2% -14.7%
Selmer Farm LLC TN 1.27 16 0.2651 0.2737 0.2630 0.2484 -0.6% -4.7% -8.2% -6.6% -10.5% -14.2%
Shaw Creek Solar, LLC SC 1.45 75 0.3065 0.3154 0.3018 0.2899 0.8% -1.8% -5.6% -2.0% -4.4% -8.9%
Sigurd Solar LLC UT 1.40 80 0.3145 0.3262 0.3138 0.3027 2.9% 1.2% -2.1% 3.6% 1.7% -1.6%
Springbok Solar Farm 2 CA 1.06 155 0.2941 0.2991 0.2931 0.2869 1.1% -0.6% -3.9% 0.0% -2.0% -5.5%
Springerville AZ 1.20 8 0.3064 0.3136 0.3059 0.3005 2.8% -0.2% -5.3% 1.9% -1.7% -6.8%
St. Joseph Solar IN 1.27 20 0.2323 0.2512 0.2302 0.2216 -5.6% -4.9% -10.0% -12.7% -12.3% -17.4%
Starvation OR 1.55 10 0.3126 0.3202 0.3097 0.2933 3.3% 1.1% -0.5% 3.9% 1.4% 0.1%
Statesville Solar NC 1.24 5 0.2652 0.2754 0.2619 0.2485 -0.6% -2.4% -5.0% -4.0% -5.6% -8.4%
Stuttgart Solar AR 1.55 81 0.3148 0.3260 0.3109 0.2955 -1.1% -3.6% -7.7% -6.6% -9.7% -14.1%
Sumrall I Solar Farm MS 1.42 52 0.2992 0.3126 0.3026 0.2853 -0.4% -5.3% -8.8% -5.7% -10.7% -14.4%
Trent River Farm NC 1.44 5 0.2926 0.3016 0.2887 0.2767 1.0% -0.3% -2.8% -0.5% -1.8% -4.3%
Troy Solar IN 1.29 50 0.2542 0.2707 0.2545 0.2411 -3.2% -4.5% -7.5% -8.8% -10.7% -14.3%
Turquoise Nevada, LLC NV 1.02 60 0.2514 0.2607 0.2496 0.2395 2.0% 1.0% -2.1% 2.4% 0.8% -1.8%
Two Creeks Solar WI 1.42 150 0.2507 0.2646 0.2489 0.2367 -2.9% -3.4% -6.3% -7.9% -9.0% -12.0%
Two Mile Desert Project NC 1.30 16 0.2664 0.2759 0.2644 0.2537 0.7% -1.0% -4.0% -0.8% -2.8% -6.1%
Vuelta Solar MA 1.09 6 0.2029 0.2129 0.2029 0.1918 -0.2% -1.9% -3.8% -2.5% -4.5% -6.7%
Wapello Solar LLC IA 1.28 100 0.2514 0.2624 0.2478 0.2348 -2.3% -3.7% -7.2% -6.6% -8.7% -12.6%
Water Strider Solar VA 1.35 80 0.2777 0.2856 0.2777 0.2615 0.1% -2.2% -3.0% -1.6% -4.3% -5.3%
Webster Holdco Solar CSG MN 1.34 5 0.2552 0.2568 0.2483 0.2380 -0.6% -2.7% -5.1% -4.2% -6.4% -8.8%
Western Antelope Blue Sky Ranch A CA 1.19 20 0.3262 0.3310 0.3267 0.3179 1.9% -0.3% -2.7% 1.9% -0.5% -3.0%
White River Solar 2 CA 1.31 20 0.3287 0.3347 0.3266 0.3169 3.3% 0.9% -2.9% 3.5% 1.1% -2.5%
Whitewright Solar TX 1.40 10 0.3123 0.3182 0.3048 0.2878 0.3% -4.3% -8.7% -4.6% -9.0% -13.9%
Wilmot Energy Center LLC AZ 1.04 130 0.2818 0.2850 0.2800 0.2698 3.0% -1.1% -5.4% 1.3% -3.4% -7.3%
Wyandot Solar Farm OH 1.20 10 0.2215 0.2336 0.2182 0.2068 -3.4% -3.9% -6.4% -9.2% -9.8% -12.9%
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